Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-\{5-[N-(2-Pyridyl)carbamoyl]pentanamido\}pyridinium hexafluorophosphate

Pei-Chi Cheng, ${ }^{a}$ Chia-Jun Wu, ${ }^{\text {a }}$ Huan-Ching Chen, ${ }^{a}$ Jhy-Der Chen ${ }^{\text {a* }}$ and Ju-Chun Wang ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Chung-Yuan Christian University, Chung-Li, Taiwan, and ${ }^{\mathbf{b}}$ Department of Chemistry, Soochow University, Taipei, Taiwan Correspondence e-mail: jdchen@cycu.edu.tw

Received 17 June 2009; accepted 7 July 2009
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.036 ; w R$ factor $=0.096 ;$ data-to-parameter ratio $=12.1$.

In the crystal structure of the title compound, $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}$.$\mathrm{PF}_{6}{ }^{-}$, the cations and anions are situated on centres of inversion. Thus, the $\mathrm{N}-\mathrm{H} H$ atom is disordered over both N atoms due to symmetry. In the crystal, molecules are connected via $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The cation adopts the $\cdots A A A \cdots$ trans conformation in the solid state.

Related literature

For similar structures, see: Chen et al. (2007).

$\cdot \mathrm{PF}_{6}$

Experimental

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{PF}_{6}{ }^{-}$	$\beta=96.415(10)^{\circ}$
$M_{r}=444.32$	$V=912.8(3) \AA^{3}$
Monoclinic, $P 2_{1} / c$	$Z=2$
$a=6.2119(18) \AA$	Mo $K \alpha$ radiation
$b=12.9265(11) \AA$	$\mu=0.23 \mathrm{~mm}^{-1}$
$c=11.439(2) \AA$	$T=295 \mathrm{~K}$

$0.5 \times 0.2 \times 0.2 \mathrm{~mm}$
Data collection
Bruker P4 diffractometer 1334 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan (XSCANS; Siemens, 1995)
$T_{\text {min }}=0.945, T_{\text {max }}=0.962$
2288 measured reflections
1612 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036 \quad 133$ parameters
$w R\left(F^{2}\right)=0.096$
$S=1.07$
1612 reflections
$R_{\text {int }}=0.020$
3 standard reflections every 97 reflections intensity decay: none

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1A $\cdots \mathrm{F} 1$	0.86	1.98	$2.737(2)$	145
N1-H1 $A \cdots \mathrm{O}$	0.86	2.10	$2.674(2)$	124
N2-H2 $A \cdots \mathrm{~F}^{\mathrm{i}}$	0.86	1.95	$2.774(2)$	161
N2-H2 $A \cdots \mathrm{~F}^{\mathrm{i}}$	0.86	2.40	$3.050(2)$	133

Symmetry code: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.

Data collection: XSCANS (Siemens, 1995); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful to the National Science Council of the Republic of China for support. This research was also supported by the project of specific research fields in ChungYuan Christian University, Taiwan, under grant CYCU-97-CR-CH.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2150).

References

Chen, H.-C., Hu, H.-L., Chan, Z.-K., Yeh, C.-W., Jia, H.-W., Wu, C.-P., Chen, J.-D. \& Wang, J.-C. (2007). Cryst. Growth Des. 7, 698-704.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1995). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2009). E65, o1825 [doi:10.1107/S1600536809026488]

2-\{5-[N-(2-Pyridyl)carbamoyl]pentanamido\}pyridinium hexafluorophosphate

P.-C. Cheng, C.-J. Wu, H.-C. Chen, J.-D. Chen and J.-C. Wang

Comment

The compound N^{l}, N^{2}-di(2-pyridyl)adipoamide has been used as bridging ligand in coordination chemistry (Chen et al., 2007). In the present work the structure of the title compound (Fig. 1) has been determined to investigate the role of the cation-anion interaction on the ligand conformation. The molecules are connected via $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Tab. 1). The cation adopts the AAA trans conformation in the solid state. This conformation is the same as that found for the neutral $N^{l}, N^{2}-\mathrm{di}(2-$ pyridyl)adipoamide ligand which cocrystallize with water (Chen et al., 2007).

Experimental

$N^{1}, N^{2}-\operatorname{Di}\left(2\right.$-pyridyl)adipoamide $(0.30 \mathrm{~g}, 1.00 \mathrm{mmol})$ and $\mathrm{AgPF}_{6}(0.25 \mathrm{~g}, 1.00 \mathrm{mmol})$ were placed in a flask containing 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was refluxed for 8 h to give a white precipitate, which was then filtered and dried under vacuum. By dissolving the solid in dichloromethane, followed by allowing the solvent to evaporate slowly under air, plate colorless crystals suitable for X-ray crystallography were obtained.

Refinement

All the hydrogen atoms were situated into idealized positions and constrained by the riding atom approximation with C - H $=0.93-0.97 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. The occupancy of the H atom H1A was set to be 0.5 to balance the charge. Because of the disorder of the N-H H atom, the structure was also refined in space group P c and $P 2_{1}$. However, even in these cases the disorder is still present and therefore, space group $P 2_{1} / c$ was selected.

Figures

Fig. 1. The title molecule with the labelling scheme. The bond to the disordered H atom is indicated by dashed open lines. The displacement ellipsoids are drawn at the 30% probability level.Symmetry codes: (i) $-\mathrm{x},-\mathrm{y}+1,-\mathrm{z}$; (ii) $-\mathrm{x}-1,-\mathrm{y},-\mathrm{z}$.

2-\{5-[N-(2-Pyridyl)carbamoyl]pentanamido\}pyridinium hexafluorophosphate

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{P}_{1} \mathrm{~F}_{6}{ }^{-} \quad F_{000}=456$
$M_{r}=444.32$
Monoclinic, $P 2_{1} / c$
$D_{\mathrm{x}}=1.617 \mathrm{Mg} \mathrm{m}^{-3}$

Hall symbol: -P 2 ybc
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 27 reflections

supplementary materials

$a=6.2119$ (18) \AA
$b=12.9265(11) \AA$
$c=11.439(2) \AA$
$\beta=96.415(10)^{\circ}$
$V=912.8(3) \AA^{3}$
$Z=2$

$$
\begin{aligned}
& \theta=5.1-12.5^{\circ} \\
& \mu=0.23 \mathrm{~mm}^{-1} \\
& T=295 \mathrm{~K} \\
& \text { Plate, colorless } \\
& 0.5 \times 0.2 \times 0.2 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker P4

diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=295 \mathrm{~K}$
ω scans
Absorption correction: multi-scan
(XSCANS; Siemens, 1995)
$T_{\text {min }}=0.945, T_{\text {max }}=0.962$
2288 measured reflections
1612 independent reflections
1334 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.096$
$S=1.07$
1612 reflections
133 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0403 P)^{2}+0.4314 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.40 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.30$ e \AA^{-3}
Extinction correction: none

Special details

Experimental. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
P	0.0000	0.5000	0.0000	$0.0275(2)$	
F1	$0.0589(2)$	$0.37673(9)$	$-0.03443(10)$	$0.0367(3)$	
F2	$0.2624(2)$	$0.52790(12)$	$0.01505(15)$	$0.0549(4)$	
F3	$-0.0162(3)$	$0.53230(11)$	$-0.14390(11)$	$0.0517(4)$	
O	$-0.0438(3)$	$0.16414(14)$	$0.01248(14)$	$0.0526(5)$	
N1	$0.2814(3)$	$0.26186(14)$	$0.14024(15)$	$0.0331(4)$	0.50
H1A	0.1777	0.2752	0.0861	0.040^{*}	
N2	$0.0760(3)$	$0.12150(15)$	$0.20013(15)$	$0.0352(4)$	
H2A	0.0473	0.0858	0.2599	0.042^{*}	
C1	$0.4629(4)$	$0.32123(18)$	$0.1488(2)$	$0.0387(5)$	
H1B	0.4739	0.3749	0.0957	0.046^{*}	$0.0410(5)$
C2	$0.6283(4)$	$0.30293(19)$	$0.2341(2)$	0.049^{*}	
H2B	0.7533	0.3430	0.2392	$0.0386(5)$	
C3	$0.6078(4)$	$0.22297(19)$	$0.3140(2)$	0.046^{*}	
H3A	0.7187	0.2102	0.3739	$0.0347(5)$	
C4	$0.4248(4)$	$0.16336(18)$	$0.30451(18)$	0.042^{*}	
H4A	0.4107	0.1102	0.3579	$0.0300(5)$	
C5	$0.2600(3)$	$0.18256(16)$	$0.21465(17)$	$0.0336(5)$	
C6	$-0.0652(4)$	$0.11249(17)$	$0.09912(19)$	$0.0365(5)$	0.044^{*}
C7	$-0.2390(4)$	$0.03259(18)$	$0.10327(19)$	0.044^{*}	$0.0375(5)$
H7A	-0.3056	0.0409	0.1755	0.045^{*}	0.045^{*}
H7B	-0.1743	-0.0357	0.1041		
C8	$-0.4124(4)$	$0.04088(18)$	$-0.0011(2)$	-0.0012	
H8A	-0.4784	0.1089	-0.0733		
H8B	-0.3451	0.0339			

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P	$0.0269(4)$	$0.0280(4)$	$0.0265(4)$	$-0.0007(3)$	$-0.0013(3)$	$-0.0024(3)$
F1	$0.0443(7)$	$0.0275(6)$	$0.0364(6)$	$0.0055(6)$	$-0.0032(5)$	$-0.0043(5)$
F2	$0.0268(7)$	$0.0474(8)$	$0.0887(12)$	$-0.0045(6)$	$-0.0011(7)$	$-0.0043(8)$
F3	$0.0854(11)$	$0.0420(8)$	$0.0276(7)$	$0.0119(7)$	$0.0052(7)$	$0.0018(6)$
O	$0.0577(12)$	$0.0553(11)$	$0.0398(9)$	$-0.0212(9)$	$-0.0163(8)$	$0.0162(8)$
N1	$0.0326(10)$	$0.0340(10)$	$0.0319(9)$	$-0.0024(8)$	$-0.0009(8)$	$0.0032(8)$
N2	$0.0315(10)$	$0.0448(11)$	$0.0282(9)$	$-0.0073(9)$	$-0.0020(7)$	$0.0074(8)$
C1	$0.0428(13)$	$0.0332(12)$	$0.0395(12)$	$-0.0057(10)$	$0.0023(10)$	$0.0022(10)$
C2	$0.0328(12)$	$0.0410(13)$	$0.0482(13)$	$-0.0077(10)$	$-0.0002(10)$	$-0.0053(11)$
C3	$0.0307(11)$	$0.0445(14)$	$0.0381(12)$	$0.0037(10)$	$-0.0077(9)$	$-0.0038(10)$

C4	$0.0333(12)$	$0.0385(12)$	$0.0305(10)$	$0.0014(10)$	$-0.0040(9)$	$0.0043(9)$
C5	$0.0277(11)$	$0.0336(11)$	$0.0281(10)$	$0.0009(9)$	$0.0007(8)$	$0.0005(9)$
C6	$0.0325(11)$	$0.0342(11)$	$0.0329(11)$	$0.0008(9)$	$-0.0022(9)$	$0.0012(9)$
C7	$0.0367(12)$	$0.0382(12)$	$0.0330(11)$	$-0.0049(10)$	$-0.0023(9)$	$0.0004(10)$
C8	$0.0353(11)$	$0.0362(12)$	$0.0394(12)$	$-0.0046(10)$	$-0.0024(10)$	$0.0009(10)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{P}-\mathrm{F} 2{ }^{\mathrm{i}}$	1.6596 (14)
$\mathrm{P}-\mathrm{F} 2$	1.6596 (14)
P-F3	1.6902 (13)
$\mathrm{P}-\mathrm{F} 3{ }^{\text {i }}$	1.6902 (13)
P-F1	1.6912 (12)
$\mathrm{P}-\mathrm{F} 1^{\mathrm{i}}$	1.6913 (12)
O-C6	1.214 (3)
N1-C5	1.348 (3)
N1-C1	1.358 (3)
N1-H1A	0.8600
N2-C6	1.375 (3)
N2-C5	1.383 (3)
N2-H2A	0.8600
C1-C2	1.356 (3)
F2 ${ }^{\text {i }}$ - $\mathrm{P}-\mathrm{F} 2$	180.0
F2 ${ }^{\text {i }}$ - $\mathrm{P}-\mathrm{F} 3$	90.09 (8)
F2-P-F3	89.91 (8)
F2 ${ }^{\text {i }}$ - $\mathrm{P}-\mathrm{F} 3^{\mathrm{i}}$	89.91 (8)
F2-P-F3 ${ }^{\text {i }}$	90.09 (8)
F3-P-F3 ${ }^{\text {i }}$	180.00 (9)
F2 ${ }^{\text {i }}$ - $\mathrm{P}-\mathrm{F} 1$	90.39 (7)
$\mathrm{F} 2-\mathrm{P}-\mathrm{F} 1$	89.61 (7)
F3-P-F1	89.82 (6)
F3 ${ }^{\text {i }}$ - $\mathrm{P}-\mathrm{F} 1$	90.18 (6)
$\mathrm{F} 2 \mathrm{i}-\mathrm{P}-\mathrm{F} 1^{\mathrm{i}}$	89.61 (7)
$\mathrm{F} 2-\mathrm{P}-\mathrm{F} 1^{\text {i }}$	90.39 (7)
F3-P-F1 ${ }^{\text {i }}$	90.18 (6)
F3 ${ }^{\text {i }}$ - $\mathrm{P}-\mathrm{F} 1^{\mathrm{i}}$	89.82 (6)
F1-P—F1 ${ }^{\text {i }}$	180.00 (8)
C5-N1-C1	121.58 (19)
C5-N1-H1A	119.2
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	119.2
C6-N2- C 5	126.15 (18)
C6-N2-H2A	116.9
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	116.9
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	120.6 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	1197

supplementary materials

N1—C1-H1B	119.7
C1-C2-C3	$118.9(2)$
C1-C2-H2B	120.5
Symmetry codes: (i) $-x,-y+1,-z ;$ (ii) $-x-1,-y,-z$.	

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{~F} 1$	0.86	1.98	$2.737(2)$	145
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O}$	0.86	2.10	$2.674(2)$	124
N2—H2A $\cdots \mathrm{F} 3{ }^{\text {iii }}$	0.86	1.95	$2.774(2)$	161
N2—H2A $\cdots \mathrm{F}^{\text {iii }}$	0.86	2.40	$3.050(2)$	133

Symmetry codes: (iii) $x,-y+1 / 2, z+1 / 2$.

C7-C8-H8B
H8A-C8-H8B
109.1
107.8
$D-\mathrm{H} \cdots A$
145
124

133

Fig. 1

